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)In stochastic scheduling and optimal maintenance problems that have been
- considered in the literature, the optimization criterion used has often been

equivalent to minimizing the expected first passage times to a set of states. A typic'al
*, method used in establishing the optimality of a certain policy is the method of successive

approximations on the appropriate dynamic programming functional equations. As an intermediat
result, this technique often involves the optimality of the pertinent policy for all finite
horizon versions of the problem. In this paper we characterize tstochastically optimal policie
as policies that process a similar property, i.e. they are optimal in expectation for all
members of a sequence of appropriately defined finite horizon problems. We use this
characterization to establish the stochastic optimality of relevant policies for the optimal
repair allocation for a series system problem and for a scheluding problem.
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ON STOCHASTIC OPTIMALITY OF POLICIES IN FIRST PASSAGE PROBLEMS*

by

Michael N. latehakis and Costis elolidakis
Technical Univesrity of Crete Technical University of Crete

and Columbia University

ABSTRACT

In stochastic scheduling and optimal maintenance problems that have
been considered in the literature, the optimization criterion used has
often been equivalent to minimizing the expected first passage times to aset of states. A typical method used in establishing the optimality of a
certain policy is the method of successive approximations on the
appropriate dynamic programming functional equations. As an
intermediate result, this technique often involves the optimality of the
pertinent policy for all finite horizon versions of the problem. In this
paper we characterize stochastically optimal policies as policies that
posess a similar property, i.e. they are optimal in expectation for all
members of a sequence of appropriately defined finite horizon problems.
We use this characterization to establish the stochastic optimality of
relevant policies for the optimal repair allocation for a series system
problem and for a scheluling problem.

1. Introduction. In many problems that have been considered in the litera-

ture of stochastic scheduling and maintenance, the optimization criterion

employed has often been to minimize the expected first passage times to a set

of "desirable" states. A typical method used in establishing the optimality of a

certain policy is the method of successive approximations on the appropriate

dynamic programming functional equations. As an intermediate result, this

technique often involves the optimality of the pertinent policy for all finite

horizon versions of the problem.

*This research was partially supported by the NSF under Grant NO.

DMS-84-05413 and the AFOSR under contract AFOSR 87-0072
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In this paper we show that the stochastic optimality of a policy can be

obtained in a similar manner by establishing that the policy is optimal for a

class of appropriately defined finite horizon problems. Furthermore this

approach can be used to establish that a stochastically optimal policy does not

exist. It is known that stochastic optimality is the strongest optimization

criterion since it implies optimality under both the expected and the

discounted first passage time criteria.

In this paper we examine two cases of application of the property above.

We first consider a generalization of the problem of optimal allocation over

time of a single repairman to failed components of a series system, previously

considered in Katehakis and Derman (1984); see this paper for references on

other work on this problem. Operation in a varying enviroment is considered

and the following assumptions are made. Let N denote the number of

components in the system Let @ denote the state of the environment

which is observable and let 8 denote the set of all possible states of the

environment; 8 is assumed to be (for simplicity) finite. Furthermore, we

model the law of motion for the state of the environment by a continuous time

Markov Chain [8(t) , t k 0) with known transition rates (q(@'/@), 0,8" c 81 .

Components may be either in a functioning or in a failed state. To model the

effect of the operating environment on the time to failure of the components,

we assume that when the state of the environment is 6 the failure time of

the ith component is an exponentially distributed random variable with

known rate Iii(e) ( 1 i i N , 6 e 8 ) In addition we assume that the

failure time of any component is independent of the state of other components.

The time required to repair component i is also an exponentially distributed

random variable the rate Xi of which is independent of the state of the

environment. Repaired components are as good as new. It is assumed that it
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is possible to reassign the repairman among failed components instantaneously.

In this paper it is shown that the policy which always assigns the

repairman to the failed component with the smallest failure rate among the

failed ones (smallest failure rate first or SFR policy) minimizes

stochasticallv the time the system spends under repair. Hence, it is optimal

with respect to both the maximum availability and the maximum discounted

- operation time criteria, irrespective of the values of the repair rates and the

discount rate.

In Katehakis and Derman (1984), the optimality of the SFR policy with

respect to the average system operation time criterion was obtained in the

case of non-varying enviroment. The proof involved establishing that the SFR

policy minimized the expected first passage times to the functioning state; this

was done by showing that the functional equations of the relevant Markovian

decision problem were valid under this policy. The method of proof then was

based on induction on the number of the components. The present proof,

based on propositions I and 2 below, although simpler than the original,

establishes optimality under a stronger criterion for a more general model.

We also consider the following stochastic scheduling problem examined by

Van der Heyden (1981); see also Weiss and Pinedo (1982). Jobs arrive

according to a Poisson process with rate r . The processing time of a job is

an exponentially distributed random variable with a parameter that is chosen

upon arrival by sampling from a known distribution F. All random variables

are assumed to be independent. There are p processors and the objective

is to minimize the expected time until all jobs have been completed (also called

the expected makespan). It has been established, in the papers above, that

the policy which always assigns processors to the uncompleted jobs with the

Longest Expected Processing Times (LEPT policy) minimizes the expected

3



makespan. We modify Van der Heyden's work and obtain the stochastic

optimality of the LEPT policy.

2. Characterization of Stochastically Optimal Policies in First Passage

Problems.

We first consider the discrete time first passage problem in Markovian

Decision Theory on a (for simplicity) countable state space, which is specified

by the following elements.

1. The state space S and the action sets A(s) , s E S

2. The transition law: (p(s-/s,a) , s',s c S , a c A(s))

- 3. A subset So of S

4. An initial state so

We will denote this problem by (ld) A policy iT generates a stochastic

process (XiT(k) , k = 1,2 .... . The first passage time from a state s to SO

will be denoted by TR(s)

A policy Yt0 is called stochastically optimal if it satisfies

st
-.* (1) T.O(s) 6 Tn(s) for all alternative policies n , e £ S
a.

where, given two random variables YI , Y2 , define:

st
Y2 'l I Y2 if and only if P(YI 9 Y) b P(Y2 6 Y)

The method we use to show the stochastic optimality of a policy and to

discover whether such a policy exists is based on establishing the optimality

of the policy in the following class of finite horizon problems.

We define the finite horizon problem (fln ) , n k 1 , as follows.

1. State space Sn >s:m) , s E S , = 0,1,... ,n,

2. Action sets: A(s:m) A~s) m 1,....n , A(s:0) 0

4



II
3. Transition law:

p's'/s,a) if m' m - 1 and s , s' c S\S 0

(3) p(s':m'/!s;m),a) 1 if m - 1 and s , s' So

0 otherwise

Reward structure:

r 1 if s E So and m = 0
0 otherwise

J Every policy in the process (11) induces a policy refering to the family

of processes {([In ) , n 1 11 which does not depend on n and vise versa.

Thus, there is a 1 - I correspondence between policies associated with the

problem ([i) and policies refering to the family of problems (01n)) which do

not depend on n

The following can be easily established.

Proposition 1. A policy is stochastically optimal in (11) if and only if it is

optimal in (Rn) for all n * I

Proof: It suffices to notice that in n steps the process either terminates

in the set of states Us;0) : s c SO ) with reward I or to some

other state with reward 0 . Thus, the total expected reward in (Rn'

coresponding to any policy w defined in ([M and initial state s,n' is

PrTff(s) i nj

For a continuous time first passage problem the approach described above

is applicable if we can use the device of uniformization; see Jensen(1953),

Veinott(1969) and Lipman(1975). To be precise, the continuous time problem,

which is denoted by ([c) , is specified by:

1. The state space S and the action sets A(s) , s f ,

5



2. The transition law, which is given in terms of transition rates

(v(s-/s,a) , s' , s c S , a c A(s,)

3. A subset So of S

4. An initial state s o

Let us define

'5' v(s,a, = Es vs'/s,a)

The device of uniformization essentially involves to notice that if the

transition rates are bounded and if we consider v * v(s,a) 4 s, a , then,

by counting (dummy) transitions back to state s at a rate (v - v(s,a)) the

sojourn times in all states are equalized, i.e., they are i.i.d. exponentially

distributed random variables with rate v Thus, a discrete first passage

problem is defined on the same state and action spaces with transition

probabilities given by:

(6) p(s 's,a) { v(s'/s,a)/v if s S
- - v(,s'/s,a))/v if = s'

c
Let TC(s) denote the first passage time from state s to the subset S0

for the original continuous time process and let Tf(s) denote the first

passage time from s to So  for the discrete time process above (note that

5" without any loss in generality we can assume that v = 1 and thus regard

Tf(s) as a random variable counting the number of transitions to S O )

We formally state the following,

Proposition 2. A policy rr0 is stochastically optimal for the continuous time

problem if and only if the actions prescribed by n0 constitute a

stochastically optimal policy in the discrete time problem.

Proof: It is known, Keilson(1979), that the uniformized process is
5,.
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probabilistically identical to the original process: thus we can assume that

C,TCfs) refers to the later. Let Yi, Y2,... denote the sequence of i.i.d.

sojourn times in the continuous time uniformized process. Then,

Ti.'s)

(7) T ,s', = I Yk
k = 1

and the proof can be completed easily: see Ross (1983 p. 255)

Proposition 2 enables us to study continuous time problems by applying

proposition 1 to the discrete time problem obtained via uniformization.

3. Optimal Repair of a Series System.

At any point in time the state of the system is specified by a vector

x = (xl,...,xN) with the convention that x i = I or 0 according to whether the

ith component is functioning or not and a scalar @ which denotes the state

of the environment. Thus, S = (0,1lNxe is the set of all possible states and

W ((1,8) , 0 c (} is the set of all functioning states for the system.

Given a state (x,@) c S , we define:

C0 (x,O) = {i : Xi = 0}

Cl(x,o) = {i : x= 1}

(6i,X,8) = ((Xl,...,xi -,,xi 1 .....'N);
8 > , for 6 0 or 1

a(x:O) min(Vi(O) i c Co(x:} ,
'S i(x;0' : Nl ii0

11(X; INxiIgi(e)

q(8) X q(8'/8)

Assumption A: we assume that if j A i then p8' ' i 8 4 8 E)

This in particular implies that ax,6 a(x V (x.8 c S.

].



When the system is in state (x,d) the set of all possible actions can be

identified with the set of the failed components with the interpretation that

action i E Co(x:a) means that the repairman is assigned to component i

When the system is in state (x:8;m) and action i c C 0 Ix: is chosen the

following transitions are possible

i) to state (l.,x;8C , with rate X.
I 1

ii) to state (0 kx:) , with rate [k , k E C1 (x:0

iii) to state (x;@') , with rate q(@'10 , , E £ 8

The discrete time decision problem induced by the above is defined on

the same state space with the following transition law. When the system is in

state (x;@:m) and action i c Co(x:0V is chosen the following transitions

are possible.

i) to state (li,x;8) with probability X.i  v

ii) to state (0 ,x;6) , with probability / v , k E C (x;@)

iii) to state (x:@') , with probability qc('!%/v ,, 0' E 8

iv) to state (x;@) , with probability (v - pLx:) - X. - q(8")/v1

3.1 Construction of a family of Markovian Decision Problems. We construct a

family of discrete time, finite horizon markovian decision models as follows.

For any n positive integer construct problem (nn) by defining:

1. States: (x;e;m) , (x;o) c 8 , m = 0,1,...,n

2. Action sets: A(x;@;m) C 0(x;@'

3. System dynamics: when the system is in state (x:@:m) and action

i C C0 (x:6) is chosen the following transitions are possible

i) to state (l,x:@;m-l) , with probability Xi v1 1

iij to state 0 ,x;0;m-l) , with probability vk , k E C X:6

iii) to state (x:8':m-1) , with probability q @' @ v , @ 0 O ,

8
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iv) to state (x:;:m-) , with probability (v - V(x:@', - X. - q(a vi

where v is any constant greater than the sum of all transition rates.

4. Reward structure:

I if (x:@) c W and m = 0
0 otherwise

3.2. The SFR policy is stochastically optimal. Take n and denote by Vfx:e:m:

the value of state (x;@;m) in the finite horizon problem (InI . To write

the functional equations for V(x;a;m) ,M = 1,..., n , we first define

A(x;@;m~i) = ( {(v - vk(x;@) - X - q(a)) V~x:@;m-l)
V1

X.V(l..x:@;m-l) + kN (Okx:a:ml)h ~ ~ ~ ~ ~ k k i i ik'kV(k'X%-l

e.e q(e'/8)V(x;8';m-l}

(8) V(x;e:m,) = max {A(x;8;m;i)}
iECo(X;8)

. 1 if (x;6) E W

(9) V(x;8;) t0 otherwise

Lemma 3. Let E xi 6 N - 2. Then under assumption Afor any (x;8) E S

i, j e C0(x;O), m 4 1 and j i i the following inequalities hold

(10) X .- X. ) V(x;e;m) b XiV(lix;@;m) - X V(l1,x;8:m)

(11) V(x;@:m) i Vjl ,x;e:m) , 1 4 i I N

Proof. We prove the above inequalities simultaneously by induction on m

Throughout the proof we use the quantities: L.. 'x:@:m:, defined by:

'12) L.j (x:@:m C X.- X ) Vx:d;m) - X.V (1.,x:O:m) - X.V(ljx:e:m)

The induction hypothesis is expressed by (13), '14) below

9



1l3) L. 'x:d:m; * 0 , for all x, 8, i, j with j i

and

(14) Vlx:,3:m i V(l.,x:,3:m) 1 1 i i N

'13 and f14 are obviously true for m 1 . We next complete the induction as

follows.

Step 1: we first show that the following inequalities hold.

15 X.X-.;(,v -X - 4(~)- q(8 'V(x:8;m) + X, Vi ,x:,3;m )
1 j) a(x) ax)'

i UCV - a(x)-4 p(8) - Vxa)- q(6))JV(l.,x:a;m)

V - X Vx; - P (6) - px:6:; -a~m

- V(l ,l ,x:a;m, 6- pa~)
U 1 lx), j

* hee x~i if j a(x
where Vx a(x) if j a x)

To establish 15'; we first note that

' 1 -b X L ( x ; a : i ) ( X .- X . " ( - X .V ( x : @ : m ) X V l .x ; a : m ;

X .(-X V(.,x;@;M) + XV(l,l,@:m)

We also note that from (13) we have

*(17) X L. (I ~X;@) 0

a(x) i~j a(X)

Next (13) implies that

V1~ ( a X" -L 'a))~ill VxO') q(@')L.jx@M

which leads to

/19) Cv - u x:@ qia )L (x:6:m - X L. .(x;6;m)
ij a ii

10
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6A% .( V(X: a:m) - V 1.,X; a:mt) - L ) J Vx:6:m) - V Il ,x:i:m;)
J 1 1J Jj

i i ( .( V(x:t:m - V1,. ,x:a:m)) - J''X.( V(x;G:m) - V( l.,x:@:m)

Where the last inequality follows from the induction hypothesis (11) and the

fact that a.ja) I i(8,

Using (16) or (17) in (19) (according to whether a(x) = j or ac.x) j; we

obtain (15", after simple operations.

Step 2: we next show that the following inequality holds.

(20) (X. - X.) xN:l.k (@)V(O x.8:m)

1 j kkIlkk k'

X (i kalk(kV(lijOk,X:a;m) - Xj k xkgk(8V(ljOk,.;in)

To prove (20) it suffices to note that (10) implies that:

(21) Jk=XkIk Li( Okx:6:m) 0 , for all x, 8, i, j

Step 3: the next inequality is established.

(22) (X. - X.) _8 .q(@'/8)V(x;O':m)
* 1 3

Xi . q(@/)V(lix:';m) - X 1.q(8/8)V(l.,x:6':m)

To prove (22) it suffices to note that (10) implies that:

(23) X 8.q(B/8) L. (x:,';m) 1 0 , for all x, 0', i, j

Notice that for (23) to hold it essential that the failure rates of the compo-

nents of the system have the same ordering for all 8 (assumption A) and

* that the repair rates are independent of 8

Step 4: we next complete the induction step for inequalities (10)

1
We multiply both sides of inequalities (15), (20), (22) by - and addv

them. Thus, after some simple algebra we obtain the following inequality.

2) <X -  X.)A(x:t):m:a(x)) i X i,'\ lifx;?:m:a(x)) X P., 1 j, x;a:M':Vx)q

1 1 1

T11

) l*.A**d**l~ A
,a-A.. -* .'., *-D~. .



Now observe that the following relations hold due to the inductive hypothesis.

(25) A'x:@:m:a(x)l V(x:8:m+l)

26', A(l i,x;6:m:a(x)) : (1.,x'O):m+l')

27 A( jx:@:m:8(x)) V(l.,x:e:ml)

Therefore, (10) holds for m - 1 also.

Step 5: we complete the induction step for relation (11).

a(lix) if i a(x)

a(x) if i a(x)

After simple computations in (11, for m + 1 the reader may check that it

suffices to establish

28) "v X a(x)-i - (x:8) - q(e,(V(li,x:e:m) - V(x;8:m))

xbVx)(a(l(),xe; m) - V Ib(x)' lix:8;m)) +

- vv Okx;o;m))

*Z.q('/@)(V(x;8';m) - V(lix;@';m))

Now, (28) holds since, from the inductive hypothesis, the left hand side of

(28) is nonnegative while the right hand side is nonpositive: note that the

first term in the right hand side of (28) is always a difference of the type

covered by the induction hypothesis (14).

Theorem 1. Under the assumptions made, the SFR policy minimizes

stochastically the time the system spends under repair

Proof. The previous lemma shows that the SFR policy is optimal for all (In)

n 1 Hence the result follows from Propositions 1 and 2.

.12
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4. Scheduling Jobs to Minimize The Makespan. The particular problem we

examine is that considered in Van der Heyden (1981). The state space for this

problem is: S = hx : x I {XlX2,...,xm } , I --, , xi E (0,B) ) u 0 ,

where state 0 is the empty state for the system , xi  denotes the

processing rate of the i-th job in the system (waiting or being processed),

and B is some bound. The action set in state x , A(x) , contains all

subsets of x that contain at most p elements.

After uniformization, the functional equations for the finite horizon

problem we consider can be writen as

(29) V(x:m+l) = max aA(x) (I V(x\{x};m)xj + r Ev(xu*ry\:m)I/v} 1 1 m f

with boundary condition,

f 1 if xzO

(30) V(x:O)

0 otherwise

where the expectation is taken with respect to the random processing rate y

chosen from the distribution F.

We can readily establish the following,

Theorem 2. The LEPT policy is stochastically optimal.

Proof: To estabilsh the stochastic optimality of the LEPT policy, it suffices

to show that it is optimal in the finite horizon problem defined above for all

n . The proof of this is equivalent to establishing inequalities which are

analogous to those in part 3 of Van der Heyden (1981), i.e. inequalities

(3 .2 )n , (3.3) n , (3 .4 )n but with the inequality sign reversed. This can be

done by examining all cases as in Van der Heyden (1981) and following exactly

the same steps but with symmetric arguments.

13
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